
new/usr/src/uts/common/sys/scsi/conf/device.h 1

**
 9871 Mon Aug 17 09:15:39 2015
new/usr/src/uts/common/sys/scsi/conf/device.h
6131 struct scsi_device uses a 1-bit signed bitfield
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2014 Garrett D’Amore <garrett@damore.org>
27 */

29 /*
30 * SCSI device structure.
31 *
32 * All SCSI target drivers will have one of these per target/lun/sfunc.
33 * It is allocated and initialized by the framework SCSA HBA nexus code
34 * for each SCSI target dev_info_t node during HBA nexus DDI_CTLOPS_INITCHILD
35 * processing of a child device node just prior to tran_tgt_init(9E). A
36 * pointer the the scsi_device(9S) structure is stored in the
37 * driver-private data field of the target device’s dev_info_t node (in
38 * ’devi_driver_data’) and can be retrieved by ddi_get_driver_private(9F).
39 */
40 #ifndef _SYS_SCSI_CONF_DEVICE_H
41 #define _SYS_SCSI_CONF_DEVICE_H

43 #include <sys/scsi/scsi_types.h>

45 #ifdef __cplusplus
46 extern "C" {
47 #endif

49 struct scsi_device {
50 /*
51 * Routing information for a SCSI device (target/lun/sfunc).
52 *
53 * The scsi_address(9S) structure contains a pointer to the
54 * scsi_hba_tran(9S) of the transport.
55 *
56 * For devices below an HBA that uses SCSI_HBA_ADDR_SPI
57 * unit-addressing, the scsi_address(9S) information contains
58 * decoded target/lun addressing information.
59 *
60 * For devices below an HBA that uses SCSI_HBA_ADDR_COMPLEX
61 * unit-addressing, the scsi_address(9S) information contains a

new/usr/src/uts/common/sys/scsi/conf/device.h 2

62 * pointer to the scsi_device(9S) structure and the HBA can maintain
63 * its private per-unit-address/per-scsi_device information using
64 * scsi_address_device(9F) and scsi_device_hba_private_[gs]et(9F).
65 *
66 * NOTE: The scsi_address(9S) structure gets structure-copied into
67 * the scsi_pkt(9S) ’pkt_address’ field. Having a pointer to the
68 * scsi_device(9S) structure within the scsi_address(9S) allows
69 * the SCSA framework to reflect generic changes in device state
70 * at scsi_pkt_comp(9F) time (given just a scsi_pkt(9S) pointer).
71 *
72 * NOTE: The older SCSI_HBA_TRAN_CLONE method of supporting
73 * SCSI-3 devices is still supported, but use is discouraged.
74 */
75 struct scsi_address sd_address;

77 /* Cross-reference to target device’s dev_info_t. */
78 dev_info_t *sd_dev;

80 /*
81 * Target driver mutex for this device. Initialized by SCSA HBA
82 * framework code prior to probe(9E) or attach(9E) of scsi_device.
83 */
84 kmutex_t sd_mutex;

86 /*
87 * SCSA private: use is associated with implementation of
88 * SCSI_HBA_ADDR_COMPLEX scsi_device_hba_private_[gs]et(9F).
89 * The HBA driver can store a pointer to per-scsi_device(9S)
90 * HBA private data during its tran_tgt_init(9E) implementation
91 * by calling scsi_device_hba_private_set(9F), and free that
92 * pointer during tran_tgt_fini(9E). At tran_send(9E) time, the
93 * HBA driver can use scsi_address_device(9F) to obtain a pointer
94 * to the scsi_device(9S) structure, and then gain access to
95 * its per-scsi_device(9S) hba private data by calling
96 * scsi_device_hba_private_get(9F).
97 */
98 void *sd_hba_private;

100 /*
101 * If scsi_slave is used to probe out this device, a scsi_inquiry data
102 * structure will be allocated and an INQUIRY command will be run to
103 * fill it in.
104 *
105 * The inquiry data is allocated/refreshed by scsi_probe/scsi_slave
106 * and freed by uninitchild (inquiry data is no longer freed by
107 * scsi_unprobe/scsi_unslave).
108 *
109 * NOTE: Additional device identity information may be available
110 * as properties of sd_dev.
111 */
112 struct scsi_inquiry *sd_inq;

114 /*
115 * Place to point to an extended request sense buffer.
116 * The target driver is responsible for managing this.
117 */
118 struct scsi_extended_sense *sd_sense;

120 /*
121 * Target driver ’private’ information. Typically a pointer to target
122 * driver private ddi_soft_state(9F) information for the device. This
123 * information is typically established in target driver attach(9E),
124 * and freed in the target driver detach(9E).
125 *
126 * LEGACY: For a scsi_device structure allocated by scsi_vhci during
127 * online of a path, this was set by scsi_vhci to point to the

new/usr/src/uts/common/sys/scsi/conf/device.h 3

128 * pathinfo node. Please use sd_pathinfo instead.
129 */
130 void *sd_private;

132 /*
133 * FMA capabilities of scsi_device.
134 */
135 int sd_fm_capable;

137 /*
138 * mdi_pathinfo_t pointer to pathinfo node for scsi_device structure
139 * allocated by the scsi_vhci for transport to a specific pHCI path.
140 */
141 void *sd_pathinfo;

143 /*
144 * sd_uninit_prevent - Counter that prevents demotion of
145 * DS_INITIALIZED node (esp loss of devi_addr) by causing
146 * DDI_CTLOPS_UNINITCHILD failure - devi_ref will not protect
147 * demotion of DS_INITIALIZED node.
148 *
149 * sd_tran_tgt_free_done - in some cases SCSA will call
150 * tran_tgt_free(9E) independent of devinfo node state, this means
151 * that uninitchild code should not call tran_tgt_free(9E).
152 */
153 unsigned sd_uninit_prevent:16,
153 int sd_uninit_prevent:16,
154 sd_tran_tgt_free_done:1,
155 sd_flags_pad:15;

157 /*
158 * The ’sd_tran_safe’ field is a grotty hack that allows direct-access
159 * (non-scsa) drivers (like chs, ata, and mlx - which all make cmdk
160 * children) to *illegally* put their own vector in the scsi_address(9S)
161 * ’a_hba_tran’ field. When all the drivers that overwrite
162 * ’a_hba_tran’ are fixed, we can remove sd_tran_safe (and make
163 * scsi_hba.c code trust that the ’sd_address.a_hba_tran’ established
164 * during initchild is still valid when uninitchild occurs).
165 *
166 * NOTE: This hack is also shows up in the DEVP_TO_TRAN implementation
167 * in scsi_confsubr.c.
168 *
169 * NOTE: The ’sd_tran_safe’ field is only referenced by SCSA framework
170 * code, so always keeping it at the end of the scsi_device structure
171 * (until it can be removed) is OK. It use to be called ’sd_reserved’.
172 */
173 struct scsi_hba_tran *sd_tran_safe;

175 #ifdef SCSI_SIZE_CLEAN_VERIFY
176 /*
177 * Must be last: Building a driver with-and-without
178 * -DSCSI_SIZE_CLEAN_VERIFY, and checking driver modules for
179 * differences with a tools like ’wsdiff’ allows a developer to verify
180 * that their driver has no dependencies on scsi*(9S) size.
181 */
182 int _pad[8];
183 #endif /* SCSI_SIZE_CLEAN_VERIFY */
184 };

______unchanged_portion_omitted_

